

PyMoe

PyMoe is a python interface to several popular Anime and Manga services for Python 3.

Python 2

	What about python 2 bro?

	Use python 3. It’s time. Let it go, Let it die. Shhh.

Services

As Of Version: 0.7 Beta

	Hummingbird.me - Finished

	Anidb - Not Started

	Anilist.co - Partially Written

	Bakatsuki LN Translations - Finished

	My Anime List (MAL) - Finished

	Visual Novel DB - Finished

	Errors - Details on the various Errors returned

Indices and tables

	Index

	Module Index

	Search Page

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	active() (built-in function)

 	add() (built-in function)

 	
 	Anime (built-in class)

 	authenticate() (built-in function)

C

 	
 	chapters() (built-in function)

 	
 	code (ServerError attribute)

 	cover() (built-in function)

D

 	
 	dbstats() (built-in function)

 	
 	delete() (built-in function)

F

 	
 	favorite_anime() (built-in function)

 	
 	feed() (built-in function)

G

 	
 	GeneralLoginError (built-in class)

 	
 	get() (built-in function), [1]

 	get_text() (built-in function)

I

 	
 	id() (built-in function)

 	
 	info() (built-in function)

L

 	
 	light_novels() (built-in function)

M

 	
 	Manga (built-in class)

 	MoeError (built-in class)

 	
 	msg (GeneralLoginError attribute)

 	(ServerError attribute)

 	(UserLoginFailed attribute)

N

 	
 	NoSSL (built-in class)

 	NT_DATE_OBJ (built-in class)

 	NT_DATES (built-in class)

 	NT_EPISODES (built-in class)

 	NT_FLAGS (built-in class)

 	
 	NT_REWATCHED (built-in class)

 	NT_SCORES (built-in class)

 	NT_STATS (built-in class)

 	NT_STATUS (built-in class)

 	NT_STORAGE (built-in class)

 	NT_TYPEDATA (built-in class)

R

 	
 	remove() (built-in function)

S

 	
 	search() (built-in function), [1]

 	ServerError, [1]

 	(built-in class)

 	set() (built-in function), [1]

 	
 	STATUS_INTS_ANIME (built-in class)

 	STATUS_INTS_MANGA (built-in class)

 	STATUS_INTS_UANIME (built-in class)

 	STATUS_INTS_UMANGA (built-in class)

T

 	
 	teaser() (built-in function)

U

 	
 	update() (built-in function)

 	User (built-in class)

 	
 	user() (built-in function)

 	UserLoginFailed (built-in class)

V

 	
 	v2() (built-in function)

W

 	
 	web_novels() (built-in function)

Anidb

Welcome to the AniDB implementation of PyMoe. The AniDB implementation currently supports downloading nightly title dumps, the http interface and searching for AIDs using Eloyard’s website at http://anisearch.outrance.pl/.
The AniDB implementation exposes these interfaces through three public facing interfaces:

Methods

TBD

Bakatsuki

Welcome to the Bakatsuki implementation. This Implementation is made entirely using the Mediawiki API and allows you to query against the current and past Bakatsuki translation projects.

Methods

	
active()

	Returns a list of tuples in the format (title, pageid) for all the projects currently in the active category.

	
light_novels(language : string = "English")

	Language should be one of the languages available on the site list. Defaults to English. For an Idea of what to put here, click on another language of light novels and look for the value in (and).

Returns a list of tuples in the format (title, pageid) that list the light novels in the given language.

	
teaser(language : string = "English")

	Language should be one of the languages available on the site list. Defaults to English. For an Idea of what to put here, click on another language of teaser projects and look for the value in (and).

Returns a list of tuples in the format (title, pageid) that list the current teaser projects for the given language.

	
web_novels(language : string = "English")

	Language should be one of the languages available on the site list. Defaults to English. For an Idea of what to put here, click on another language of web novels and look for the value in (and).

Returns a list of tuples in the format (title, pageid) that list the current web novels for the given language.

	
chapters(title : string)

	Return an OrderedDict which contains the chapters found for the visual novel specified. This OrderedDict contains tuples of (url, title). It is ordered by chapter # and then sub chapter. This should be the title given from one of the above functions.

	
cover(pageid : string)

	Return a url to the cover image used for the given visual novel at the given pageid. Use the pageid’s given in one of the above functions.

	
get_text(title : string)

	Return the html content for a given chapter given the title as given by the chapters function above. You’ll have to parse the HTML yourself or throw it into a disposable web control.

Yes, you can use this to get the html content of other pages too.

Hummingbird

The Hummingbird class exposes itself through three interfaces: anime, user, library. These interfaces provide all functionality available in the Hummingbird API.

Anime Interface

	
id(aid : int, title=None)

	Search Anime by ID. The first parameter should be the Anime’s ID. The second parameter specifies the title_language_preference option and defaults to None. The options are canonical, english or romanized.

	
v2(clientid : string, kwargs)

	This searches Anime against the V2 Anime endpoint. This endpoint requires you to register for a Client ID on Hummingbird. You should pass that as the first parameter. Additionally, you should pass one of id or malid, but only one. Where id is the ID of the anime and malid is the anime’s MAL id. The IDs should be ints.

	
search(term : string)

	Search Anime by the term given.

User Interface

	
authenticate(password : string, kwargs)

	Authenticate and login as the specified user. Returns the oauth token for that user. The first parameter is the user’s password. You should additionally pass one and only one of username or email which are also strings.

	
info(user : string)

	Get details about the given user. This returns the information available at /users/{user} as a dictionary.

	
feed(user : string)

	Get a user’s feed. Return a list of dictionaries which contain the data from the returned Story Objects.

	
favorite_anime(user : string)

	Get a user’s favorite anime. Return a list of anime object dictionaries.

Library Interface

	
get(user : string, status : string = None)

	Get a user’s Anime list. Status is an optional parameter that defines which specific list you want. Status is one of: currently-watching, plan-to-watch, completed, on-hold or dropped

	
set(aid : int, auth_token : string, kwargs)

	Add an anime to a user’s list or update it. The first parameter is the id of the anime, The second parameter is the auth_token obtained from authorizing as the user. There are many kwargs.

	status: currently-watching, plan-to-watch, completed, on-hold, dropped

	privacy: public or private

	rating: 0, 0.5, 1, 1.5 … 5. Setting it to 0 or the current value will remove it

	sane_rating_update: See above. Except with this one only setting it to 0 removes it.

	rewatching: true or false (This is a str, not a bool)

	rewatched_times: # of times rewatched

	notes: Personal Notes

	episodes_watched: Number of episodes watched. Between 0 and total_episodes. If equal to total_episodes, you must set status to complete or you’ll get 500’d.

	increment_episodes: If set to true will increment episodes_watched by 1. If used along with episodes_watched, will increment that value by 1. (this is a str, not a bool)

	
remove(aid : int, auth_token : string)

	Remove an Anime from a user’s list.

MyAnimeList

This module, named Mal, encapsulates and abstracts EVERYTHING. This means two things. One, it takes some getting used to. Two, once you get used to it, it’s the greatest thing since sliced bread. The major encapsulations here are Anime and Manga, but many smaller ones exist.

Encapsulations

These have their very own document located at MAL Encapsulations. Read there for an explanation of what each one holds.

Basic Operation

You will interface with the Mal functions only through the Anime and Manga abstractions. These exist as a way to make it easier on the programmer to update values and for the system to build necessary XML statements for the server. Anime and Manga share the same operations (Asides from stylistic differences like read versus watched, which are the same as the website).
There are four main operations you can perform on the anime and manga fields of a Mal object. Please note that you must pass a username and password upon object instantation, since the API requires it for every call.

	
search(term : string)

	Search for a given term within Anime or Manga.

	
add(item)

	Where item is an instance of PyMoe.Mal.Objects.Anime or PyMoe.Mal.Objects.Manga, this will add the given Anime or Manga to the user’s list with the given parameters.

	
update(item)

	Where item is an instance of PyMoe.Mal.Objects.Anime or PyMoe.Mal.Objects.Manga, this will update the given Anime or Manga on the user’s list with the new data.

	
delete(item)

	Where item is an instance of PyMoe.Mal.Objects.Anime or PyMoe.Mal.Objects.Manga, this will remove the given Anime or Manga from a user’s list.

Users

PyMoe’s MyAnimeList implementation does support grabbing user profiles. Rather than separating this into different calls, this makes two requests and returns to you an ecapsulated user object that includes user stats and a full anime and manga list. This can be slow, but it’s two requests and then parsing a giant glob of XML data. I’ve tried to make it as fast as possible and on some users with smaller lists it’s in the microseconds. On larger users it can take seconds. I’ll look at ways to speed it up. But the biggest bottleneck here is not having one API to call for both lists.

	
user(name : string)

	Given a proper username, retrieve a user’s watched statistics and their full anime and manga data inside an encapsulated user object.

The user endpoint does not have average score data available for any anime or manga. It only has the user score data available. The average scores will be populated with None.

Encapsulations Again

You should probably go read MAL Encapsulations now. These encapsulations are very important to the way PyMoe works and having a good knowledge of them will allow you to do impressive things within PyMoe. What you ask?

	Use list comprehension to build a list of currently watching anime on a user’s list

	Get anime with a score of 5 or more

	Use list comprehension to build a list of anime that begin with A in a user’s list

	Use any to test if a user has even bothered to rate anime/manga ever

Visual Novel DB

This implementation allows you to access the VNDB D11 API. Have fun. It’s going to require you to read the D11 Docs, this API isn’t forgiving and I can’t abstract it any further than I have. I’ve made as many utility functions and helpers as I could.

Interface

The interface is done by initializing a connection with or without a username and password. If given, I’ll log you in automatically and handle securing the connection. Afterwards, you can use dbstats to get a dictionary of dbstats like on the main page or get to query the db.

	
dbstats()

	Get the DBstats as seen on the front page. Returned in a dictionary.

	
get(self, stype : string, flags : list or string, filters : string, options : dictionary = None)

	Send a request to the API to get results back. Stype should be one of vn, release, producer, character, votelist, vnlist or wishlist.

flags is a comma separated list of items that should be returned. It can be a list or string.

filters is odd. For strings it should be formatted <filter><op>”<term>” and for numbers <filter><op><number>. Also, per the docs, <filter>=<number> doesn’t do what we think, so use anything else.

Options is defined on the API docs, but if any of them are provided by way of the options Dictionary we will send them on with the request.

	
exception ServerError(message, code)

	This will be raised on an error returned from the server.

	
set(self, stype : string, sid : int, fields : dictionary)

	Send a request to the API to modify something in the database if logged in.

Stype is what we’re modifying. It can be one of: votelist, vnlist or wishlist.

Sid is the ID of the thing we’re changing.

Fields is a dictionary containing the fields for that specific type and their new values.

	
exception ServerError(message, code)

	This will be raised on an error returned from the server.

Errors

PyMoe defines several errors inside a superclassed MoeError so that you can always be clear where they come from and/or catch the superclass MoeError when you don’t want to catch individual errors.

	
class MoeError

	Just the superclass of the Exceptions

	
class NoSSL

	Raised when we can’t load the SSL library. Only relevant for VNDB.

	
class UserLoginFailed

	Raised when the server rejected our login credentials.

	
msg

	A string containing the message from the server. If one wasn’t given, then it’s a default failure message.

	
class GeneralLoginError

	Raised when we can’t login for any reason other than credentials. Generally only for VNDB but can also be used for other services.

	
msg

	A string containing the message from the server. If one wasn’t given, then it’s a default failure message.

	
class ServerError

	If a server error is encountered during processing of some command, this error is raised.

	
msg

	The error message returned by the server.

	
code

	The error code returned by the server. This defaults to 500. It need not be an int. VNDB uses strings for instance.

Mal Encapsulations

Welcome to the giant file of MyAnimeList Encapsulations. Get cozy, i’m going to take you on a journey.

The Structures

These are the files found in Abstractions.py. Mostly they’re small pieces of information that should be related and are muxed together to make it easier to interact with.

	
class NT_EPISODES

	This is used for anime to store current and total episodes, but also for manga to store chapters and volumes.

	
current : int

	Current Episodes/Chapters/Volumes Watched/Read

	
total : int

	Total Episodes/Chapters/Volumes for this Anime/Manga

	
class NT_SCORES

	This is used to store score data for Anime and Manga. In the user endpoint, average will be None.

	
average : int

	The average rating for this anime or manga

	
user : int

	The user’s rating for this anime or manga

	
class NT_STATUS

	This is an abstraction for status data.

	
series : string

	The status of the series

	
user : string

	The user’s status for this series

	
class NT_DATES

	This is an abstraction for the start and end dates for users and series. The API sends dates in YYYY-MM-DD format.

	
series : NT_DATE_OBJ

	Series start and end date. If not available the API returns 0000-00-00.

	
user : NT_DATE_OBJ

	User’s start and end date. If not available the API returns 0000-00-00.

	
class NT_DATE_OBJ

	Holds the actual start and end date. An abstraction within an Abstraction! Crazy!

	
start : string

	

	
end : string

	

	
class NT_STORAGE

	Storage Type and Value abstraction. Type holds the type of storage and value the ‘size’ parameter of the given storage type if appropriate. At the moment, this isn’t actually returned in any API calls, but you can use the API to modify it!

	
type : int

	Which storage type.

	
value : int

	How much exactly does it take.

	
class NT_REWATCHED

	This holds your rewatch/reread times and how rewatchable/rereadable a series is.

	
times : int

	Times rewatched/reread.

	
value : int

	On a scale of 1-5, with 5 being the best, how rewatchable/rereadable is this series?

	
class NT_FLAGS

	Just holds those random profile flags for each anime and manga.

	
discussion : bool

	Are you allowing discussion on the episodes/chapters/volumes you watch/read?

	
rewatching : bool

	Are you currently rewatching this series? This value is ignored on manga.

	
rereading : bool

	Are you currently rereading this series? This value is ignored on anime.

	
class NT_TYPEDATA

	Holds user data for anime and manga along with stats

	
list : list

	A list of Anime or Manga objects

	
stats : NT_STATS

	Stats data for anime or manga

	
class NT_STATS

	Holds user stats for anime or manga.

	
completed : str

	Number of Anime/Manga completed.

	
onhold : str

	Number of Anime/Manga on hold.

	
dropped : str

	Number of Anime/Manga dropped.

	
planned : str

	Number of Anime/Manga planned.

	
current : str

	Number of Anime/Manga currently watching.

	
days : str

	Days spent watching/reading anime/manga.

The Big Boys

Now for the big boys. Anime, Manga and User. These are the three you will use the most to interface with the API interface.

	
class Anime

	
	
aid : string

	The MAL ID of the anime.

	
title : string

	The title of the anime. In rare cases this can be None.

	
synonyms : list

	A list of the alternative titles, if any, for this anime.

	
episodes : NT_EPISODES

	current and total episodes for this anime. On add and update requests, current is used for the episode XML parameter.

	
scores : NT_SCORES

	Average and User ratings for the anime. Average will only be populated on a search call. The user attribute is used for the score XML parameter.

	
type : string

	Type of Anime. Ex: TV, ONA

	
status : NT_STATUS

	Stores the status of the series and the user’s status for this series. The user attribute is used for the status XML parameter.

	
dates : NT_DATES

	Holds the series and user start and end dates. user.start and user.end are the date_start and date_finish for the XML.

	
synopsis : string

	If available, here’s a synopsis.

	
image : string

	If available, here’s a link to the image for the anime.

	
storage : NT_STORAGE

	Holds storage type and value. type is used for storage_type and value for storage_value as far as XML parameters.

	
rewatched : NT_REWATCHED

	Times and value for the rewatched parameters. times is used for times_rewatched and value for rewatch_value as far as XML parameters.

	
flags : NT_FLAGS

	Discussion, Rewatching. Are you allowing discussion on your activity with this series and are you rewatching it? These are Bools. Discussion and Rewatching are used for the flags XML Parameter.

	
priority : int

	Sets the series priority where 1 is low and 3 is high. 1-3. Used for the priority XML Parameter.

	
comments : string

	User comments for the given Anime. Used for the comments XML parameter.

	
tags : list

	List of user tags for the anime if available. Used for the tags XML parameter.

	
fansub_group : string

	Your fansub group for this anime. Used for the fansub_group XML parameter.

	
class STATUS_INTS_ANIME

	A list used to convert the status int given by the API to a string. The API actually only gives an int in a user call. Everywhere else it’s the string anyways.

	
class STATUS_INTS_MANGA

	A list used to convert the status int given by the API to a string. The API actually only gives an int in a user call. Everywhere else it’s the string anyways.

	
class STATUS_INTS_UANIME

	A list used to convert the user version of status ints to a string.

	
class STATUS_INTS_UMANGA

	A list used to conver the user version of status ints to a string.

	
class Manga

	Manga is basically the same as Anime. Instead of relisting every attribute, you should assume Manga has all the attributes in Anime except for those listed here which have been changed.

	
mid : int

	Manga’s version of AID. The MAL ID for this Manga.

	
chapters : NT_EPISODES

	Manga’s version of Episodes. Current and Total chapters. Current is used for the chapter XML parameter.

	
volumes : NT_EPISODES

	Mangas also have volumes. This works just like chapters except it lists volumes. Current is used for the volume XML Parameter.

	
status : NT_STATUS

	This doesn’t actually differ from Anime, but I wanted to make a note here that the status values are different. So make sure to account for that.

	
reread : NT_REWATCHED

	This works just like Anime’s rewatched, but is called reread because that makes more sense to a manga object. times is used for times_reread and value for reread_value in terms of XML parameters. They work just like their Anime mirrors.

	
flags : NT_FLAGS

	Just a reminder. This works the same way as anime, but this one uses rereading instead of rewatching. Discussion is shared between both.

	
scan_group : string

	Your scanlation group for this manga series. Used as the scan_group XML Parameter.

	
class User

	The real big boy. A user object. Buckle in.

	
id : string

	User ID

	
name : string

	User Name

	
anime : NT_TYPEDATA

	The anime list along with the user’s anime stats.

	
manga : NT_TYPEDATA

	The manga list along with the user’s manga stats.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 PyMoe

_static/up-pressed.png

_static/up.png

